PRODUKTDATENBLATT

PX 234 HT

POLYURETHAN-VAKUUMGIESSHARZ FÜR PROTOTYPEN UND TECHNISCHE TEILE BIEGE E-MODUL: 1.850 MPa – $T_{\rm g}$: 220 °C

ANWENDUNGSBEREICHE

 Mit diesem Produkt k\u00f6nnen Prototypen und Musterteile gegossen werden, deren Materialkennwerte Thermoplasten wie PA 6.6, PPS und PEEK mit hoher Temperaturbest\u00e4ndigkeit \u00e4hneln sollen.

BUILDING TRUST

HAUPTEIGENSCHAFTEN

- hohe Temperaturbeständigkeit
- niedrige Viskosität
- schnell entformbar
- gute Schlagzähigkeit
- einfärbbar
- RoHs konform

BESCHREIBUNG

Basis	Polyurethan -Vakuumgießharz
Komponente A	PX 234 HT, Isocyanat, transparent
Komponente B	PX 234 HT. Polyol, transparent bis hellbernstein

PHYSIKALISCHE EIGENSCHAFTEN		Isocyanat (A)	Polyol (B)
Komponenten	PX 234 HT	PX 234 HT	
Konsistenz		flüssig	flüssig
		300	200
Dichte bei 25 °C ISO 1675	g/cm³	1,19	1,01
Mischungsverhältnis	in Gewichtsteilen	100	50
		Misch	nung
Farbe		hellbernstein	
Viskosität bei 25 °C BROOKFIELD LVT	mPa.s	250	
Topfzeit bei 23 °C für 150 g Gel Timer TECAM	min	5	
Entformzeit bei 70 °C	min	60	

MECHANISCHE EIGENSCHAFTEN

ca. Werte nach Aushärtung

Dichte (ausgehär	tet) bei 23 °C	ISO 2781	g/cm³	1,19
Härte	- bei 23 °C	ISO 868	Shore D1	80
	- bei 130 °C			70
	- bei 150 °C			65
Zug E-Modul	- bei 23 °C	ISO 527	МРа	1.800
	- bei 50 °C			1.020
	- bei 100 °C			675
	- bei 150 °C			515
Zugfestigkeit	- bei 23 °C	ISO 527	МРа	61
	- bei 50 °C			40
	- bei 100 °C			30
	- bei 150 °C			25
Biege-E-Modul		ISO 178	МРа	1.850
Biegefestigkeit		ISO 178	MPa	80
Bruchdehnung		ISO 37	%	13
Schlagzähigkeit n	ach CHARPY – ungekerbt	ISO 179/1eU	kJ/m²	41

THERMISCHE UND SPEZIFISCHE EIGENSCHAFTEN

ca. Werte nach Aushärtung

Wärmeformbeständig	keit (HDT)*	ISO 75	°C	190 – 195
Glasübergangstemperatur (T _g)*		ISO 11359	°C	220
Wärmeausdehnungskoeffizient (C _L TE) (+20 bis + 130 °C)		ISO 11359	10 ⁻⁶ K ⁻¹	120
Maximale Gießdicke			mm	5
Linearer Schwund	in Aluform nach vol in Silikonform nach	in Aluform nach Entformen** in Aluform nach vollständiger Temperung* in Silikonform nach Entformen** in Silikonform nach vollständiger Temperung*		4 8 0,5 4,5

* Mittelwerte gemessen an Standardproben / Aushärtung 60 min bei 70 °C + 1 h bei 100 °C + 2 h bei 130 °C + 1 h bei 160 °C ** 1 h bei 70 °C

VERPACKUNGSEINHEITEN

Isocyanat (A), PX 234 HT 6 x 1 kg
 Polyol (B), PX 234 HT 3 x 1,05 kg

VERARBEITUNG

- ACHTUNG: Das Isocyanat kann unter + 15 °C kristallisieren. In dem Fall das Isocyanat 2 h lang bei 70 °C erwärmen, bis es entkristallisiert ist. Danach auf Raumtemperatur abkühlen lassen und gut aufschütteln. Das Polyol enthält u.U. einen Bodensatz im Behälter, den man nicht aufrühren darf! Gut aufschütteln reicht.
- Immer direkt vor Gebrauch beide Parts im Behälter gründlich aufschütteln.
- Die Form auf + 70 °C erwärmen. Beide Parts auf +18 bis +25 °C temperieren (NICHT höher!) Isocyanat in den oberen Becher füllen (Becherrest genau ermitteln), Polyol in den unteren Becher geben.
- Unter Einhalten des Mischverhältnisses eine homogene Mischung herstellen (> 1 min mischen).
- Nach dem Vergießen die Form für 60 min bei 70 °C im Ofen belassen.
- Entformung unter Temperatur ist möglich
- Nach dem Entformen (1 h/70 °C) muß folgende Temperung durchgeführt werden, um die Kennwerte zu erzielen:
 - 60 min bei 100 °C + 120 min bei 130 °C + 60 min bei 160 °C ACHTUNG: Beim Tempern müssen Teile immer unterstützt werden, um Verzug zu vermeiden.

HINWEIS EINFÄRBEN: Der maximal zulässige Anteil beträgt 1 Gewichts-% auf den Polyolanteil bezogen. Die verwendete Farbzubereitung (z.B. CP-Color) muß wasserfrei sein und darf nur ins Polyol hineingerührt werden.

LAGERBEDINGUNGEN

Mindesthaltbarkeit	■ Isocyanat (A), PX 234 HT ■ Polyol (B), PX 234 HT	6 Monate 6 Monate
Lagertemperatur	 Isocyanat (A), PX 234 HT Polyol (B), PX 234 HT 	15-25 °C 15-25 °C

WEITERE INFORMATIONEN

Die hier enthaltenen Informationen dienen nur zur allgemeinen Orientierung. Hinweise zu spezifischen Anwendungen sind auf Anfrage bei der technischen Abteilung von Sika Advanced Resins erhältlich. Folgende Dokumente sind zusätzlich verfügbar:

Sicherheitsdatenblatt

HINWEIS MESSWERTE

Alle in diesem Datenblatt genannten technischen Werte basieren auf Laborversuchen. Aufgrund von nicht beeinflussbaren Umständen können tatsächlich gemessene Werte abweichen.

ARBEITSSCHUTZBESTIMMUNGEN

Für den Umgang mit unseren Produkten bei Transport, Handhabung, Lagerung und Entsorgung sind die wesentlichen physikalischen, sicherheitstechnischen, toxikologischen und ökologischen Daten dem aktuellen Sicherheitsdatenblatt zu entnehmen.

HAFTUNGSAUSSCHLUSS

Die vorstehenden Angaben, insbesondere die Vorschläge für Verarbeitung und Verwendung unserer Produkte, beruhen auf unseren Kenntnissen und Erfahrungen im Normalfall, vorausgesetzt die Produkte wurden sachgerecht gelagert und angewandt. Wegen unterschiedlichen Materialien und Untergründen sowie abweichenden Arbeitsbedingungen kann eine Gewährleistung eines Arbeitsergebnisses oder eine Haftung, aus welchem Rechtsverhältnis auch immer, weder aus diesen Hinweisen noch aus einer mündlichen Beratung begründet werden, es sei denn, dass uns insoweit Vorsatz oder grobe Fahrlässigkeit zur Last fällt. Hierbei hat der Anwender nachzuweisen, dass schriftlich alle Kenntnisse, die zur sachgemäßen und erfolgversprechenden Beurteilung durch Sika erforderlich sind, Sika rechtzeitig und vollständig übermittelt wurden. Der Anwender hat die Produkte auf ihre Eignung für den vorgesehenen Anwendungszweck zu prüfen. Änderungen der Produktspezifikationen bleiben vorbehalten. Schutzrechte Dritter sind zu beachten. Im Übrigen gelten unsere jeweiligen aktuellen Verkaufs-, Liefer- und Zahlungsbedingungen. Es gilt das jeweils neueste lokale Produktdatenblatt, das von uns angefordert werden sollte oder im Internet unter www.sika de heruntergeladen werden kann.

Kontakt

SIKA DEUTSCHLAND GMBH

Stuttgarter Straße 139 72574 Bad Urach - GERMANY Phone: +49 7125 940 492 Fax: +49 7125 940 401 E-Mail: tooling@de.sika.com Website: www.sikaadvancedresins.de

SIKA AUTOMOTIVE FRANCE S.A.S.

ZI des Béthunes - 15, Rue de l'Equerre 95310 Saint-Ouen-l'Aumône CS 40444

95005 Cergy Pontoise Cedex - FRANCE

Phone: +33 1 34 40 34 60 Fax: +33 1 34 21 97 87

E-Mail: advanced.resins@fr.sika.com Website: www.sikaadvancedresins.fr

AXSON TECHNOLOGIES SPAIN, S.L.

C/Guardaagulles, 8 – P.I. Congost - 08520 Les Franqueses del Valles (Barcelona) - SPAIN

Phone: +34 93 225 16 20 Fax: +34 93 225 03 05 E-Mail: spain@axson.com

Website: www.sikaadvancedresins.es

AXSON ITALIA S.R.L.

Via Morandi 15 21047 Saronno (Va) – ITALY Phone: +39 02 96 70 23 36 Fax: +39 02 96 70 23 69 E-Mail: axson@axson.it

Website: www.sikaadvancedresins.it

AXSON UK LTD

Unit 15 Studlands Park Ind. Estate Newmarket Suffolk, CB8 7AU - UNITED KINGDOM Phone: +44 1638 660 062

Fax: +44 1638 665 078 E-Mail: sales.uk@axson.com Website: www.sikaadvancedresins.uk

SIKA AUTOMOTIVE SLOVAKIA S.R.O.

Tovarenska 49 953 01 Zlate Moravce - SLOVAKIA

Phone: +421 2 5727 29 33 Fax: +421 37 3000 087

E-Mail: SikaAdvancedResins@sk.sika.com Website: www.sikaadvancedresins.com

SIKA ADVANCED RESINS US

30800 Stephenson Highway Madison Heights, Michigan 48071 - USA Phone: +1 248 588 2270

Fax: +1 248 616 7452

E-Mail: advanced.resins@us.sika.com Website: www.sikaadvancedresins.us

SIKA AUTOMOTIVE EATON RAPIDS, INC.

1611 Hults Drive

Eaton Rapids, Michigan 48827 - USA

Phone: +1 517 663 81 91 Fax: +1 517 663 05 23

E-Mail: advanced.resins@us.sika.com Website: www.sikaadvancedresins.us

SIKA AUTOMOTIVE MEXICO S.A. DE C.V.

Ignacio Ramirez #20 Despacho 202 Col. Tabacalera C.P. 06030 CDMX - MEXICO

Phone: +52 55 5264 49 22 Fax: +52 55 5264 49 16

E-Mail: marketing@axson.com.mx Website: www.sikaadvancedresins.mx

SIKA AUTOMOTIVE SHANGHAI CO. LTD.

N°53 Tai Gu Road Wai Gao Qiao

Free Trade Zone, Pudong 200131 Shanghai - CHINA Phone: +86 21 58 68 30 37 Fax: +86 21 58 68 26 01

E-Mail: marketing.china@axson.com Website: www.sikaaxson.cn

Sika Ltd. OKAZAKI Branch

2-5-12 Ohnishi Okazaki City, AICHI

444-0871 - JAPAN Phone: +81 564 26 2591 Fax: +81 564 26 2583

E-Mail: advanced-resins@jp.sika.com Website: www.sikaadvancedresins.com

AXSON INDIA PVT. LTD.

Office n°8, Building Symphony C - 3rd Floor

Range Hills Road Bhosale Nagar Pune 411 020 - INDIA Phone: +91 20 25560 710 Fax: +91 20 25560 712 E-Mail: info.india@axson.com Website: www.sikaadvancedresins.in